$$\sum_{i=1}^{n} k_{in-1} x_{in} = 0,$$

где n-1, n характеризуют соответственно n-1 и n - шаги работы алгоритма, а затем рассчитанные управляющие воздействия снова реализуются на объекте.

На четвертом шаге после получения значения выходной величины y_i - реакции объекта на вектор входных переменных x_i - уточняются параметры модели по формуле

$$\overline{K}_1 = \overline{K}_0 + \left((y_1 - y_3) / (y + \overline{x}_1^T \overline{x}_T) \right) \overline{x}_1,$$

а значение управляющих воздействий находятся из условий

$$\sum_{i=1}^{n} k_{i0} x_{i4} = y_3, \quad \sum_{i=1}^{n} k_{i3} x_{i4} = 0.$$

Литература

- 1. Виттих В.А. Адаптивная дискретизация с использованием метода наименьших квадратов / Автометрия. 1969. № 4.
- 2. Виттих В.А., Сабило В.П, Адаптивная дискретизация с использованием экспоненциальных функций / Приборостроение. J 974, № 9.
- 3. Егоров С.В., Мирахметов Д.А. Моделирование и оптимизация в АСУТП. Т.: Мехмат, 1987. 200 с.
- 4. Живоглядов В.П. Автоматизированный синтез алгоритмов активно-адаптивного управления // Изд. АН Кирг.ССР. Физ.-техн. и матем.науки. 1987. №2. С. 33-40.
- 5. Жуковский В.И., Салуквадзе М.Б. Многокритериальные задачи управления в условиях неопределенности. Тбилиси: Мецжиереба, 1991. 128 с.

СЛОЖНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ: ОПИСАНИЕ СВОЙСТВА И СТРУКТУРЫ

Балтовский А.А.

доктор технических наук, доцент, профессор кафедры кибербезопасности и информационного обеспечения Одесского государственного университета внутренних дел

Сифоров А.И.

кандидат технических наук, доцент, доцент кафедры кибербезопасности и информационного обеспечения Одесского государственного университета внутренних дел

Одним из путей повышения эффективности систем управления и обработки информации является использование более точных и достоверных математических моделей объектов или процессов на основе применения современных методов идентификации, что становится возможным с применением достижений цифровой вычислительной техники.

Основные задачи разработки математических моделей объектов и процессов отвечают государственным научно-техническим программам, которые сформулированы в

законах Украины «О научной и научно-технической деятельности» и «О национальной программе информатизации», п.п.в,7,19. В этой связи актуальность статьи очевидна.

Синтез структуры является первоначальным, очень сложным и ответственным этапом проектирования иерархической автоматизированной системы управления производством. На основании анализа литературных источников [1-5] нами установлено, что в настоящее время синтез структуры выполняется: использованием агрегативнопоследовательную декомпозиционного подхода, включающего декомпозицию системой целей, функций и задач; агрегатирование (объединение) выполняемых элементов на соответствующем уровне детализации для генерирования вариантов построения системы на основе выбранных критериев эффективности; параметризацией исходной задачи по размерности вектора управляющих переменных для отдельных элементов, которые входят в состав сложного объекта. Критерий оптимальности параметризированной задачи экспоненциально зависит от ее размерности и включает коэффициенты, учитывающие алгоритмов оптимизации различных уровней системы управления; на сложность представлении системы в виде графа сигналов. В основе методологического решения данной задачи лежит идея последовательного расширения структуры системы путем присоединения к заданной структуре дополняющейся части придающей системе требуемые свойства; на основе эвристических правил, нередко приводящих к структурнопорочным системам. Общие недостатки известных подходов – огромные затраты и несовершенство, требующие последующей доработки и не всегда заканчивающихся удовлетворительными результатами.

Целью работы является разработка строго формализованного метода, основанного на теоретико-множественных конструкциях. Такой подход позволяет предельно общо подойти к проблеме описания сложных систем, к которым относятся иерархические системы, дает возможность наделять полученные конструкции конкретными математическими структурами, что способствует детальному изучению и получению результатов.

При определении иерархической системы наиболее естественным является подход, основанный на теоретико-множественных конструкциях. Это объясняется двумя факторами: во-первых, позволяет предельно общо подойти к проблеме списания сложных систем, к которым относятся иерархические системы; во-вторых, такой подход дает возможность наделять полученные конструкции конкретными математическими структурами, что способствует детальному изучению и получению конкретных результатов. При этом мы исходили из понятия системы S как подмножества декартового произведения некоторого семейства множеств $\left\{V_i\middle|i\in I\right\}$ $S\subset\prod_{i\in I}V_i$, I — множество индексов, принимая во

внимание существование глобальной реакции системы $R: X imes \prod_{i \in I_1} V_i o \prod_{j \in I_2} V_j$, где

 $I_1 \cup I_2 = I$ и $I_1 \cap I_2 = \varnothing$; X – некоторое абстрактное множество, называемое множеством состояний. Иерархическая n – уровневая система U представляет собой пятерку:

$$U = (X, Z, \Omega, \varphi, \psi)$$
 (1)

где X – множество состояний системы является декартовым произведением

множеств $X = \prod_{i=1}^n X_i$. Множество управлений Z и множество внешних воздействий Ω являются множествами отображений

$$\forall z \in Z \ Z : X \to X, \ \forall \omega \in \Omega \ \omega : X \to X.$$

Причем $Z = \prod_{i=1}^n Z_i$, $\Omega = \prod_{i=1}^n \Omega_i$, так что $z(x) = (z_1(x_1), z_2(x_2), \dots, z_n(x_n))$, $\omega(x) = (\omega_1(x_1), \omega_2(x_2), \dots, \omega_n(x_n))$, для всех $x = (x_1, x_2, \dots, x_n) \in X$, где $z_i \ni Z_1 : X_i \to X_i$, $\Omega_i \ni \omega_i : X_i \to X_i$.

Будем полагать, что множества Z_i и Ω_i содержат элемент \wedge такой, что $\wedge(x)=x$, для всех $x\in X_i$ и для $i=1,2,\ldots,n$.

Далее, $\phi: X \to P(X)$, $\psi: X \to P(Z)$, где $P(\cdot)$ – совокупность всех непустых подмножеств, множества m, ϕ и ψ являются диагональными произведениями $\phi = \sum\limits_{i=1}^n \phi_i, \ \psi = \sum\limits_{i=1}^n \psi_i \ \text{от ображений} \ \phi_i: X \to P(X_i), \ \psi_i: X \to P(Z_i), \ (i=1,2,\ldots,n).$

Так что для каждого $x = (x_1, x_2, ..., x_n) \varphi(x) = \prod_{i=1}^n \varphi_i(x), \quad \psi(x) = \prod_{i=1}^n \psi_i(x) \varphi_i(x)$ определяются значениями многозадачных отображений

$$\varphi_{ki}: X_k \to P(X_i), (k=1,2,\ldots,n)$$
 (2)

как первое непустое множество в последовательности $A_n \subseteq A_{n-1} \subseteq ... \subseteq A_1$, $A_m = \bigcap_{k=1}^m \varphi_{ki} \big(x_k \, \big), \, \big(m = 1, 2, ..., n \big).$

Аналогично $\psi_i(x)$ — первое непустое пересечение $B_m = \bigcap_{k=1}^m \psi_{ki}(x_k)$ в последовательности $B_n \subseteq B_{n-1} \subseteq ... \subseteq B_1$.

Таким образом, иерархическую систему (1) можно рассматривать как систему, состоящую из n - уровней $(i=1,2,\ldots,n)$

$$U_i = (X_i, Z_i, \Omega_i, \{\varphi_{ii}\}, \{\psi_{ii}\}_{1 \le i \le n})$$
(3)

Будем называть множество X_i множеством состояний i - го уровня, Z_i – множеством возможных управлений i - м уровнем и Ω_i – множеством внешних воздействий на i - й уровень. $\varphi_{ij}(x)$ можно интерпретировать как множество j - го уровня, удовлетворяющих требованиям i - ому уровню, находящемуся в состоянии $x \in X_i$. В частности множество $\varphi_{ii}(x)$ будем называть собственной целью i - го уровня, отвечающей его состоянию x. Если $\varphi_{ij}(x) = X_j$, то это будет означать инвариантность состояний x i - го уровня к состояниям j -го уровня (отсутствие целеуказаний).

Множество $\psi_{ij}(x)$ является множеством допустимых управлений на j - ом уровне, определяемым состоянием x уровня U_i . Отсутствие ограничений на управляемость j - м

уровнем со стороны уровня U_i , находящегося в состоянии x, выражается равенством $\psi_{i_j}(x) = Z_j$.

Отображения ϕ_i и ψ_i определяют приоритетность уровней. Действительно, при определении значения $\phi_i(x)$ (соответственно $\psi_i(x)$) ($x=(x_1,x_2,...,x_n)$) прежде всего учитываются элементы множества $\phi_{1i}(x_1)$, затем $\phi_{2i}(x_2)$ и т.д. до $\phi_{ni}(x_n)$ (соответственно $\psi_{1i}(x_1)$, $\psi_{2i}(x_2)$,..., $\psi_{ni}(x_n)$.

Сохраняя принятую индексацию, мы будем говорить, что уровень U_k является вышестоящим по отношению к $U_k^{'}$, если $k < k^{'} \left(U_k > U_k^{'} \right)$. Следовательно, можно говорить об упорядоченном множестве уровней системы U, где $U_1 > U_2 > \ldots > U_n$, взаимосвязь которых как сверху вниз, так и снизу вверх характеризуется функциями ϕ_{ij} и ψ_{ij} $(i,j=1,2,\ldots,n)$ и не ограничивается при этом взаимодействиями между соседними уровнями.

Состояние x системы U будем называть идеальным (или решение системы), если x является неподвижной точкой многозначного отображения ϕ , т.е. $x \in \phi(x)$. Если множество неподвижных точек отображения ϕ не пусто $(F_{ix}\phi \neq 0)$, то система U называется разрешимой.

Иерархическая система потенциально управляема в состоянии x, когда существует такое управление $z \in \psi(x)$, что $z(x) \in \psi(z(x))$, и полностью управляема в состоянии x, если $\forall \omega \in \Omega \ \exists \, z \in \psi(x)$, то $z(\omega(x))$ – неподвижная точка отображения ϕ .

В общем случае под управлением иерархической системы можно понимать конечную последовательность управлений $z_1, z_2, ..., z_p$, которая приводит состояние x системы в состояние x_p так что $z_i(x) = x_1, \ z_l(x_{l-1}) = x_l \ (l = 1, 2, ..., h)$.

Если ввести в рассмотрение функцію $f:Z\to R$ множества Z во множество действительных чисел, то можно говорить, например, о "стоимости" управлений и решать задачу об оптимальном управлении в иерархических системах.

Для разрешимости системы U необходимо, чтобы $(F_{ix}\phi_{11}\neq 0)$. Действительно, если $x=(x_1,x_2,\ldots,x_n)$ – неподвижная точка отображения ϕ , то $x_1\in\phi_1(x)$.

В силу определения ϕ_1 равно $\phi_1(x) \cap \phi_{11}(x_1) \neq 0$ и $\phi_1(x) \subseteq \phi_{11}(x_1)$, следовательно $x_1 \in \phi_{11}(x_1)$. Пусть x_1, x_2, \ldots, x_n являются непустыми компактными выпуклыми множествами в банаховых пространствах x_1, x_2, \ldots, x_n . Тогда для того, чтобы иерархическая система была разрешимой, достаточно, чтобы отображение ϕ_{ki} $(1 \leq i, \ k \leq n)$ были замкнутыми и выпуклыми.

Действительно, при этих условиях множество состояний X иерархической системы является компактным выпуклым множеством в банаховом пространстве $x=\prod_{i=1}^n x_i$. В силу

определения отображений ϕ_j $(j=1,2,\ldots,n)$ для всех $x\in X$ $\phi_j(x)$ непусто и для каждого j

$$\exists_k : \varphi_j(x) = \bigcap_{i=1}^k \varphi_{ij}(x),$$

поэтому для всех $\phi_j(x)$ является замкнутым и выпуклым как непустое пересечение выпуклых множеств. Тогда отображение $\phi = \sum_{j=1}^n \phi_j$ будет удовлетворять условиям замкнутости и компактности. И по теореме Какутани о неподвижных точках имеем: $F_{ir}\phi \neq \phi$.

Предложены новые показатели эффективности системы управления производством. Разработанные подходы к алгоритмам автоматизированного синтеза структуры иерархической системы управления производством обеспечивают снижение временных и денежных затрат, способствуют скорейшему переходу к внедрению системы на конкретном производстве.

Литература

- 1. Иванов В.В. Обзор достижений в области кибернетики и вычислительной техники: Вопр. точности и эффективности вычисл. алгоритмов, Киев: ИК АН УССР, 1969. 135 с.
- 2. Монтгомери Д.К. Планирование эксперимента и анализ данных: Пер. с англ.-Л. : Судостроение, 1980. 384 с.
- 3. Справочник по типовым программам моделирования / А.Г. Ивахненко, Ю.В. Коппа, В.С. Степашко и др.; Под ред. А.Г. Ивахненко. К.: Техніка, 1980. 184 с.
- 4. Месарович М., Такахара М. Общая теория систем: математические основы . М.: Мир, 1987. 311 с.
- 5. Александров В.В., Горский Н.Д. Алгоритмы и программы структурного метода обработки данных. Л.: Наука, 1983. 288 с.

ФІШИНГ ЯК СУЧАСНА ПРОБЛЕМА СУСПІЛЬСТВА

Мілентьєва А.М.

слухач 2-го курсу магістратури факультету $N\!\!\!_{2} 1$ Одеського державного університету внутрішніх справ

Ісмайлов К.Ю.

кандидат юридичних наук, майор поліції завідувач кафедри кібербезпеки та інформаційного забезпечення Одеського державного університету внутрішніх справ

Сучасний світ практично неможливо уявити без нових інформаційних технологій, в основі яких лежить широке використання комп'ютерної техніки та новітніх засобів